Unit 2 Applications of Equations and Inequalities 4.5 Compound Inequalities DAY 1

I can ...

... graph and write inequalities containing "and" and "or".

Pick a number that is greater than 5 or less than or equal to -1.

Pick a number that is less than or equal to 5 and less than -1.

Pick a number that is greater than 5 and less than -1.

A Compound Inequality is two inequalities that are joined by the word and or the word or.

$$x \ge 5$$
 or $x < -1$

$$x \ge 5 \text{ or } x \le -1$$

$$x > 5 \text{ or } x < -1$$

AND

Set-Builder Notation

$$-1 \le x < 5$$

or

Interval Notation

[-1, 5)

$$x < 5$$
 and $x \ge -1$

$$-1 \le x < 5$$

[-1, 5)

 $x \le 5$ and x > -1

$$-1 < x \le 5$$

(-1, 5]

 $x \le 5$ and $x \ge -1$

 $-1 \le x \le 5$

[-1, 5]

x < 5 and x > -1

-1 < x < 5

(-1, 5)

I THINK I GOT IT?

Write a compound inequality, in set-builder and interval notation (and statements only), that represents each situation. Graph the solutions.

1. All real numbers that are at least -1 and at most 3.

2. All real numbers that are less than 0 or greater than or equal to 6.

3. All real numbers that are less than -1, but greater than -5

I GOT IT!

4. Discounted tickets are available to children under 7 years old or to adults 65 and older.

5. Fun Night is for all students who are at most 14 years old and at least 10 years old.

(1-,2-) 1->x>2- (5 $0\le x$ or 0>x (2 $0\le x\le 1-$ (1 $0\le$

Practice: p229 1-4 and p230 17-20, 29-32

Unit 2 Applications of Equations and Inequalities 4.5 Compound Inequalities DAY 2

I can ...

... solve compound inequalities.

Is 3 the solution to the inequality: $-2(x+5) \ge 5x + 23$?

Is 3 the solution to the compound inequality: -(x-8) < 9 and $\frac{x}{5} + 1 \le 2$?

Solve the compound inequality and graph the solution.

$$-3 \le \frac{3}{2}x + 6 \le 3$$

$$7 + 2a > 9$$
 or $-4a > 8$

I GOT IT!

t+5 < 2 or 3t+1 > 10

 $-29 \le 5s - 4 \le 41$

Unit 2 Applications of Equations and Inequalities 4.5 Compound Inequalities DAY 1

Day _____

I can...

... graph and write inequalities containing "and" and "or".

Pick a number that is greater than 5 or less than or equal to -1.

A value that satisfies one lor the other inequality

Pick a number that is less than or equal to 5 and less than -1.

A value that satisfies both inequalities

Pick a number that is greater than 5 and less than -1.

There is no value that satisfies

both inequalities of

the same time.

- $x \ge 5$ or x < -1
- $x \ge 5$ or $x \le -1$
- x > 5 or x < -1

OR

AND

Set-Builder Notation

 $-1 \le x < 5$

x < 5 and $x \ge -1$

$$-1 \le x < 5$$

[-1, 5)

 $x \le 5$ and x > -1

$$-1 < x \le 5$$

(-1, 5]

 $x \le 5$ and $x \ge -1$

$$-1 \le x \le 5$$

[-1, 5]

x < 5 and x > -1

$$-1 < x < 5$$

(-1, 5)

or

Interval Notation

[-1, 5)

I THINK I GOT IT?

Write a compound inequality, in set-builder and interval notation (and statements only), that represents each situation. Graph the solutions.

1. All real numbers that are at least -1 and at most 3. $\begin{cases} x & 1 \le x \le 3 \end{cases}$

2. All real numbers that are less than Of or greater than or equal to 6.

3. All real numbers that are less than -1, but greater than -5

I GOT IT!

4. Discounted tickets are available to children under 7 years old or to adults 65 and older.

5. Fun Night is for all students who are at most 14 years old and at least 10 years old.

(1-,
$$\xi$$
-, $1->x>\xi$ - (ξ , $0\le x$ to $0>x$ (ξ , ξ -, $1-$) $\xi\ge x\ge 1$ - (1) ξ -, $1-$) ξ -, $1-$ 0 (ξ -, $1-$ 0) ξ -,

Unit 2 Applications of Equations and Inequalities 4.5 Compound Inequalities DAY 2

Day _____

I can ...

... solve compound inequalities.

Is 3 the solution to the inequality: $-2(x+5) \ge 5x + 23$?

$$-\frac{33}{7} \stackrel{?}{=} \frac{7}{7}$$

Is 3 the solution to the compound inequality: -(x-8) < 9 and $\frac{x}{5} + 1 \le 2$?

$$-x+849$$
 $-8-8$
 $-1-1$
 $-x < 1$
 $-x < 1$
 -1
 -1
 -1
AND $5 \cdot \frac{x}{5} \le 1 \cdot 5$
 $x > -1$
Yes
 $3 > -1$
 $3 \le 5$

Solve the compound inequality and graph the solution.

$$-3 \le \frac{3}{2}x + 6 \le 3$$

$$\frac{2}{3} \cdot -9 \le \frac{3}{2} \times \le -3 \cdot \frac{2}{3}$$

$$7 + 2a > 9 \text{ or } -4a > 8$$

971

I GOT IT!

$$t+5 < 2 \text{ or } 3t+1 > 10$$
 $-5 - 5 - 1 - 1$
 $t < -3 - 3 - 3$
 $t > 9$
 $t > 3$
 $t > 3$

$$t < -3$$
 or $t > 3$
 $(-\infty, -3) \cup (3, \infty)$

